14489 measured reflections 5170 independent reflections

 $R_{\rm int} = 0.044$

4461 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(μ -N,N',N"-tri-3-pyridylpyridine-1,3,5-tricarboxamide- κ^2 N:N')bis[dichloridomercury(II)] methanol disolvate

Pei Wang,^a Yufei Wang,^b Chao Huang,^a Lixiang Chang^a and Jie Wu^a*

^aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China, and ^bCollege of Chemical Engineering and Food Science, Zhongzhou University, Zhengzhou 450044, People's Republic of China Correspondence e-mail: wujie@zzu.edu.cn

Received 17 May 2011; accepted 28 May 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.043; wR factor = 0.074; data-to-parameter ratio = 15.0.

The title dinuclear centrosymmetric complex, $[Hg_2Cl_4(C_{24}H_{18}-N_6O_3)_2]\cdot 2CH_3OH$, comprises Hg^{II} atoms coordinated by two Cl atoms and two N atoms from ligands in a distorted tetrahedral geometry. The solvent molecules are linked by hydrogen bonds.

Related literature

For general background, see: Fortner *et al.* (2005). For a related structure, see: Qin et al. (2003).

Experimental

Crystal data

 $\begin{array}{lll} [\mathrm{Hg}_2\mathrm{Cl}_4(\mathrm{C}_{24}\mathrm{H}_{18}\mathrm{N}_6\mathrm{O}_3)_2]\cdot 2\mathrm{CH}_4\mathrm{O} & \gamma = 86.40~(3)^\circ \\ M_r = 1483.95 & V = 1315.0~(4)~\mathrm{\AA}^3 \\ \mathrm{Triclinic}, P\overline{1} & Z = 1 \\ a = 8.6772~(17)~\mathrm{\AA} & \mathrm{Mo}~\mathrm{K}\alpha~\mathrm{radiation} \\ b = 12.243~(2)~\mathrm{\AA} & \mu = 6.10~\mathrm{mm}^{-1} \\ c = 13.530~(3)~\mathrm{\AA} & T = 293~\mathrm{K} \\ \alpha = 66.81~(3)^\circ & 0.20~\times~0.18~\times~0.16~\mathrm{mm} \\ \beta = 84.66~(3)^\circ \end{array}$

Data collection

Rigaku Saturn724 diffractometer Absorption correction: numerical (*CrystalClear*; Rigaku/MSC, 2006) $T_{\rm min} = 0.738, T_{\rm max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	345 parameters
$vR(F^2) = 0.074$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$
5170 reflections	$\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Hg1-Cl1	2.3574 (15)	Hg1-N3 ⁱ	2.385 (4)
Hg1-Cl2	2.3687 (19)	Hg1-N1	2.400 (4)

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$04 - H4 \cdots N6^{ii}$ $N5 - H5A \cdots O1^{iv}$	0.82 0.86	1.94 2.42	2.740 (6) 3.141 (6)	167 142
Symmetry codes: -x + 1, -y + 2, -z +	(ii) $x + 1, y = -2.$	v - 1, z - 1;	(iii) $-x, -y + 3$	3, -z + 1; (iv)

Data collection: *CrystalClear* (Rigaku/MSC, 2006); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXS97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge financial support by the Student Innovative Pilot Project of Zhengzhou University (grant No. 2010cxsy095).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2329).

References

Fortner, K. C., Bigi, J. P. & Brown, S. N. (2005). *Inorg. Chem.* 44, 2803–2814. Qin, Z., Jennings, M. C. & Puddephatt, R. J. (2003). *Inorg. Chem.* 42, 1956– 1965.

Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, m859 [doi:10.1107/S160053681102040X]

Bis(μ -N,N',N''-tri-3-pyridylpyridine-1,3,5-tricarboxamide- κ^2 N:N')bis[dichloridomercury(II)] methanol disolvate

P. Wang, Y. Wang, C. Huang, L. Chang and J. Wu

Comment

In recent years the rapid progress in supramolecular chemistry has contributed to discovery of special novel structures being of significance for functional materials (Fortner *et al.* 2005). To control the topology of molecular assemblies, tripodal ligands are proved promising and useful in this area. For example, N,N',N'',-tris(3-pyridinyl)-1,3,5-benzenetricarboxamide (*Z* (Qin *et al.* 2003) has been selected as an excellent tripodal ligand and many intriguing complexes have been successfully accomplished with this ligand. In this work, we selected this ligand as linker, generating a new coordination complex, [Hg~2~(C~24~H~18Ñ~6Õ~3~)~2~Cl~4~]2(CH~3ÕH), (I), which is reported here. In the compound, Hg^{II} atom is fourcoordinated by two N atoms from two ligands and two Cl atoms in a distorted tetrahedral coordination sphere (Fig. 1, Table 1). The two Hg^{II} atoms are bridged with two ligands to form a microporous MOFs with 28-number ring. The Hg(II)—N distances are 2.385 (4) Å and 2.400 (4) Å, respectively. The Hg···Hg distance in the ring is 13.568 (5) Å. In the crystal structure, intermolecular hydrogen bonds N2—H—Cl1, N5—H—O1, and the O4—H—N6 (arising from the CH3OH and ligand) generate the three-dimensional network (Fig. 2, Table 2).

Experimental

The ligand N,N',N''-tris(3-pyridinyl)-1,3,5-benzenetricarboxamide (0.1 mmol, 0.044 g) in DMF (1 mL) was added dropwise to a solution of HgCl₂ (0.05 mmol, 0.014 g) in methanol (5 mL). The precipitate was filtered and the resulting solution was allowed to stand at room temperature in the dark. After one week good quality colourless crystals were obtained, separated from a filtrate and dried in air.

Refinement

H atoms were generated geometrically, with C-H = 0.96, 0.86 and 0.93Å for methyl, N and aromatic H, respectively, and constrained to ride their parent atoms with Uiso(H) = x times Ueq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1. View of the title complex showing the labeling of the non-H atoms. H atoms have been omitted. Symmetry code used to generate the complete molecule: 1-x, 2-y, 1-z.

Fig. 2. View of the crystal packing along the *a* axis. Hydrogen bonds are shown as dashed lines.

Bis(μ -*N*,*N*',*N*''-tri-3-pyridylpyridine-1,3,5- tricarboxamide- $\kappa^2 N$:*N*')bis[dichloridomercury(II)] methanol disolvate

Crystal data

$[Hg_2Cl_4(C_{24}H_{18}N_6O_3)_2] \cdot 2CH_4O$	Z = 1
$M_r = 1483.95$	F(000) = 720
Triclinic, <i>P</i> T	$D_{\rm x} = 1.874 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.6772 (17) Å	Cell parameters from 3621 reflections
b = 12.243 (2) Å	$\theta = 2.8 - 26.0^{\circ}$
c = 13.530(3) Å	$\mu = 6.10 \text{ mm}^{-1}$
$\alpha = 66.81 (3)^{\circ}$	T = 293 K
$\beta = 84.66 \ (3)^{\circ}$	Prism, colorless
$\gamma = 86.40 \ (3)^{\circ}$	$0.20 \times 0.18 \times 0.16 \text{ mm}$
$V = 1315.0 (4) \text{ Å}^3$	

Data collection

Rigaku Saturn724 diffractometer	5170 independent reflections
Radiation source: fine-focus sealed tube	4461 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.044$
Detector resolution: 28.5714 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
dtprofit.ref scans	$h = -10 \rightarrow 10$
Absorption correction: numerical (CrystalClear; Rigaku/MSC, 2006)	$k = -15 \rightarrow 15$
$T_{\min} = 0.738, T_{\max} = 1.000$	$l = -16 \rightarrow 16$
14489 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.074$	H-atom parameters constrained
<i>S</i> = 1.10	$w = 1/[\sigma^2(F_0^2) + (0.0211P)^2 + 1.2163P]$ where $P = (F_0^2 + 2F_c^2)/3$
5170 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
345 parameters	$\Delta \rho_{max} = 0.66 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.65 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotroi	nic o	r ec	nivalent	isotro	nic dis	nlacement	parameters	$(Å^2$)
				1001.01			100000000000000000000000000000000000000	1001.01		p	p	(· · ·	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Hg1	0.06417 (3)	1.50692 (2)	0.291708 (18)	0.04562 (9)
Cl1	0.01030 (19)	1.70597 (13)	0.26971 (13)	0.0578 (4)
C12	-0.0589 (2)	1.32182 (15)	0.35590 (16)	0.0730 (5)
01	0.6022 (4)	1.1328 (4)	0.6921 (3)	0.0588 (12)
O2	0.0476 (5)	1.1393 (4)	1.0191 (3)	0.0609 (13)
O3	0.5110 (4)	0.6889 (3)	1.1175 (3)	0.0447 (10)
O4	0.5046 (4)	0.2218 (4)	0.2685 (3)	0.0502 (11)
H4	0.5939	0.1950	0.2746	0.075*
N1	0.2878 (5)	1.4403 (4)	0.3940 (3)	0.0388 (11)
N2	0.3666 (5)	1.2240 (4)	0.6615 (3)	0.0328 (10)
H2A	0.2743	1.2254	0.6904	0.039*
N3	0.8189 (5)	0.4833 (4)	0.8782 (3)	0.0396 (11)
N4	0.5735 (5)	0.6980 (4)	0.9476 (3)	0.0370 (11)
H4A	0.5560	0.7394	0.8815	0.044*
N5	0.1166 (5)	0.9886 (4)	1.1696 (3)	0.0383 (11)
H5A	0.1840	0.9316	1.1933	0.046*
N6	-0.2183 (5)	1.0971 (4)	1.2982 (4)	0.0440 (12)
C1	0.4282 (7)	1.4747 (5)	0.3503 (4)	0.0470 (15)

H1	0.4392	1.5331	0.2809	0.056*
C2	0.5569 (7)	1.4272 (5)	0.4037 (5)	0.0519 (16)
H2	0.6543	1.4513	0.3699	0.062*
C3	0.5436 (6)	1.3435 (5)	0.5077 (4)	0.0431 (14)
Н3	0.6310	1.3113	0.5454	0.052*
C4	0.3975 (6)	1.3086 (4)	0.5546 (4)	0.0324 (12)
C5	0.2711 (6)	1.3585 (5)	0.4947 (4)	0.0356 (13)
Н5	0.1722	1.3343	0.5253	0.043*
C6	0.4667 (6)	1.1419 (4)	0.7223 (4)	0.0321 (12)
C7	0.4036 (5)	1.0577 (4)	0.8305 (4)	0.0267 (11)
C8	0.2881 (5)	1.0880 (4)	0.8931 (4)	0.0282 (11)
H8	0.2388	1.1625	0.8663	0.034*
C9	0.2452 (5)	1.0064 (4)	0.9972 (4)	0.0269 (11)
C10	0.3142 (5)	0.8937 (4)	1.0355 (4)	0.0283 (11)
H10	0.2839	0.8393	1.1042	0.034*
C11	0.4282 (5)	0.8615 (4)	0.9720 (4)	0.0267 (11)
C12	0.4739 (5)	0.9443 (4)	0.8704 (4)	0.0299 (12)
H12	0.5522	0.9241	0.8284	0.036*
C13	0.1274 (6)	1.0525 (5)	1.0623 (4)	0.0329 (12)
C14	0.0080 (5)	1.0042 (4)	1.2477 (4)	0.0298 (12)
C15	-0.1147 (6)	1.0857 (4)	1.2230 (4)	0.0342 (12)
H15	-0.1257	1.1345	1.1511	0.041*
C16	-0.1994 (7)	1.0275 (5)	1.3999 (5)	0.0476 (15)
H16	-0.2682	1.0372	1.4530	0.057*
C17	-0.0839 (6)	0.9419 (5)	1.4314 (4)	0.0427 (14)
H17	-0.0782	0.8923	1.5036	0.051*
C18	0.0221 (6)	0.9311 (5)	1.3551 (4)	0.0366 (13)
H18	0.1032	0.8752	1.3747	0.044*
C19	0.5064 (6)	0.7406 (4)	1.0210 (4)	0.0291 (11)
C20	0.6681 (6)	0.5949 (4)	0.9664 (4)	0.0325 (12)
C21	0.7074 (6)	0.5125 (5)	1.0650 (4)	0.0408 (14)
H21	0.6710	0.5214	1.1284	0.049*
C22	0.8021 (7)	0.4163 (5)	1.0679 (4)	0.0463 (15)
H22	0.8300	0.3597	1.1337	0.056*
C23	0.8552 (6)	0.4041 (5)	0.9739 (4)	0.0416 (14)
H23	0.9182	0.3386	0.9773	0.050*
C24	0.7266 (6)	0.5763 (5)	0.8752 (4)	0.0429 (15)
H24	0.7003	0.6314	0.8083	0.051*
C25	0.4092 (7)	0.1503 (6)	0.3571 (5)	0.0653 (19)
H25A	0.4394	0.1553	0.4217	0.098*
H25B	0.4196	0.0693	0.3635	0.098*
H25C	0.3034	0.1774	0.3469	0.098*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Hg1	0.05767 (17)	0.03596 (14)	0.03701 (14)	0.01382 (10)	-0.00540 (11)	-0.00942 (10)
Cl1	0.0633 (10)	0.0361 (8)	0.0662 (11)	0.0097 (7)	0.0067 (8)	-0.0158 (8)

Cl2	0.0673 (11)	0.0461 (10)	0.0887 (14)	-0.0063 (9)	-0.0155 (10)	-0.0055 (9)
01	0.040 (2)	0.053 (3)	0.044 (3)	0.016 (2)	0.011 (2)	0.017 (2)
O2	0.078 (3)	0.046 (3)	0.035 (2)	0.040 (2)	0.006 (2)	0.003 (2)
O3	0.066 (3)	0.031 (2)	0.024 (2)	0.0152 (19)	0.0028 (19)	-0.0008 (17)
O4	0.048 (2)	0.056 (3)	0.038 (2)	0.023 (2)	-0.003 (2)	-0.012 (2)
N1	0.049 (3)	0.034 (3)	0.021 (2)	0.003 (2)	-0.005 (2)	0.001 (2)
N2	0.028 (2)	0.034 (2)	0.021 (2)	0.0056 (19)	-0.0017 (18)	0.0043 (19)
N3	0.046 (3)	0.037 (3)	0.032 (3)	0.016 (2)	-0.004 (2)	-0.012 (2)
N4	0.043 (3)	0.032 (2)	0.026 (2)	0.018 (2)	-0.005 (2)	-0.003 (2)
N5	0.045 (3)	0.030 (2)	0.027 (2)	0.020 (2)	0.005 (2)	-0.002 (2)
N6	0.041 (3)	0.047 (3)	0.038 (3)	0.008 (2)	0.001 (2)	-0.012 (2)
C1	0.056 (4)	0.037 (3)	0.028 (3)	0.003 (3)	0.011 (3)	0.005 (3)
C2	0.043 (4)	0.051 (4)	0.042 (4)	-0.003 (3)	0.009 (3)	0.000 (3)
C3	0.036 (3)	0.040 (3)	0.037 (3)	0.004 (3)	-0.005 (3)	0.002 (3)
C4	0.038 (3)	0.027 (3)	0.025 (3)	0.001 (2)	-0.001 (2)	-0.002 (2)
C5	0.035 (3)	0.036 (3)	0.026 (3)	-0.004 (2)	0.001 (2)	-0.002 (2)
C6	0.029 (3)	0.028 (3)	0.031 (3)	0.000 (2)	0.002 (2)	-0.004 (2)
C7	0.028 (3)	0.023 (3)	0.023 (3)	0.002 (2)	-0.004 (2)	-0.002 (2)
C8	0.027 (3)	0.023 (3)	0.031 (3)	0.006 (2)	-0.005 (2)	-0.006 (2)
C9	0.031 (3)	0.026 (3)	0.021 (3)	0.005 (2)	-0.003 (2)	-0.007 (2)
C10	0.030 (3)	0.025 (3)	0.025 (3)	-0.001 (2)	-0.001 (2)	-0.005 (2)
C11	0.026 (3)	0.025 (3)	0.026 (3)	0.008 (2)	-0.006 (2)	-0.007 (2)
C12	0.028 (3)	0.029 (3)	0.028 (3)	0.000 (2)	0.004 (2)	-0.007 (2)
C13	0.034 (3)	0.028 (3)	0.032 (3)	0.004 (2)	-0.001 (2)	-0.009 (2)
C14	0.026 (3)	0.029 (3)	0.035 (3)	0.003 (2)	0.000 (2)	-0.014 (2)
C15	0.037 (3)	0.031 (3)	0.026 (3)	0.003 (2)	0.003 (2)	-0.003 (2)
C16	0.045 (4)	0.057 (4)	0.036 (3)	0.009 (3)	0.008 (3)	-0.017 (3)
C17	0.050 (4)	0.046 (4)	0.028 (3)	0.009 (3)	-0.003 (3)	-0.012 (3)
C18	0.037 (3)	0.032 (3)	0.035 (3)	0.010 (2)	-0.006 (3)	-0.008 (3)
C19	0.031 (3)	0.024 (3)	0.028 (3)	0.002 (2)	0.002 (2)	-0.007 (2)
C20	0.034 (3)	0.025 (3)	0.034 (3)	0.007 (2)	-0.001 (2)	-0.008 (2)
C21	0.053 (4)	0.036 (3)	0.022 (3)	0.009 (3)	0.001 (3)	-0.002 (2)
C22	0.058 (4)	0.031 (3)	0.033 (3)	0.013 (3)	0.000 (3)	0.002 (3)
C23	0.047 (3)	0.029 (3)	0.040 (3)	0.015 (3)	-0.005 (3)	-0.005 (3)
C24	0.051 (4)	0.040 (3)	0.029 (3)	0.021 (3)	-0.004 (3)	-0.007 (3)
C25	0.060 (4)	0.072 (5)	0.053 (4)	0.014 (4)	0.004 (4)	-0.016 (4)

Geometric parameters (Å, °)

Hg1—Cl2 $2.3687 (19)$ C6—C7 $1.496 (6)$ Hg1—N3 ⁱ $2.385 (4)$ C7—C8 $1.380 (6)$ Hg1—N1 $2.400 (4)$ C7—C12 $1.399 (6)$ O1—C6 $1.221 (6)$ C8—C9 $1.401 (6)$	Hg1—Cl1	2.3574 (15)	С5—Н5	0.9300
Hg1—N3 ⁱ 2.385 (4)C7—C81.380 (6)Hg1—N12.400 (4)C7—C121.399 (6)O1—C61.221 (6)C8—C91.401 (6)	Hg1—Cl2	2.3687 (19)	C6—C7	1.496 (6)
Hg1—N12.400 (4)C7—C121.399 (6)O1—C61.221 (6)C8—C91.401 (6)	Hg1—N3 ⁱ	2.385 (4)	С7—С8	1.380 (6)
O1—C6 1.221 (6) C8—C9 1.401 (6)	Hg1—N1	2.400 (4)	C7—C12	1.399 (6)
	O1—C6	1.221 (6)	C8—C9	1.401 (6)
O2—C13 1.203 (6) C8—H8 0.9300	O2—C13	1.203 (6)	С8—Н8	0.9300
O3—C19 1.209 (6) C9—C10 1.386 (6)	O3—C19	1.209 (6)	C9—C10	1.386 (6)
O4—C25 1.404 (7) C9—C13 1.513 (7)	O4—C25	1.404 (7)	C9—C13	1.513 (7)
O4—H4 0.8200 C10—C11 1.390 (6)	O4—H4	0.8200	C10-C11	1.390 (6)
N1—C1 1.321 (7) C10—H10 0.9300	N1—C1	1.321 (7)	C10—H10	0.9300

N1—C5	1.336 (6)	C11—C12	1.388 (6)
N2—C6	1.347 (6)	C11—C19	1.509 (6)
N2—C4	1.421 (6)	C12—H12	0.9300
N2—H2A	0.8600	C14—C15	1.382 (7)
N3—C23	1.329 (6)	C14—C18	1.387 (7)
N3—C24	1.340 (6)	С15—Н15	0.9300
N3—Hg1 ⁱ	2.385 (4)	C16—C17	1.371 (7)
N4—C19	1.363 (6)	C16—H16	0.9300
N4—C20	1.410 (6)	C17—C18	1.358 (7)
N4—H4A	0.8600	С17—Н17	0.9300
N5—C13	1.348 (6)	C18—H18	0.9300
N5-C14	1.411 (6)	C20—C21	1.377 (7)
N5—H5A	0.8600	C20—C24	1.386 (7)
N6—C16	1.322 (7)	C21—C22	1.383 (7)
N6—C15	1.338 (6)	C21—H21	0.9300
C1—C2	1.359 (8)	C22—C23	1.372 (7)
C1—H1	0.9300	С22—Н22	0.9300
C2—C3	1.375 (7)	С23—Н23	0.9300
С2—Н2	0.9300	C24—H24	0.9300
C3—C4	1.377 (7)	C25—H25A	0.9600
С3—Н3	0.9300	C25—H25B	0.9600
C4—C5	1.387 (7)	C25—H25C	0.9600
Cl1—Hg1—Cl2	140.17 (6)	С9—С10—Н10	119.8
Cl1—Hg1—N3 ⁱ	105.41 (12)	C11—C10—H10	119.8
Cl2—Hg1—N3 ⁱ	101.24 (13)	C12—C11—C10	119.1 (4)
Cl1—Hg1—N1	107.24 (12)	C12—C11—C19	122.8 (4)
Cl2—Hg1—N1	97.44 (12)	C10-C11-C19	117.9 (4)
N3 ⁱ —Hg1—N1	98.31 (15)	C11—C12—C7	120.8 (4)
С25—О4—Н4	109.5	C11—C12—H12	119.6
C1—N1—C5	119.3 (5)	С7—С12—Н12	119.6
C1—N1—Hg1	121.6 (4)	O2—C13—N5	123.2 (5)
C5—N1—Hg1	118.9 (4)	O2—C13—C9	121.0 (5)
C6—N2—C4	126.8 (4)	N5—C13—C9	115.7 (4)
C6—N2—H2A	116.6	C15—C14—C18	118.0 (4)
C4—N2—H2A	116.6	C15—C14—N5	123.7 (5)
C23—N3—C24	118.1 (4)	C18—C14—N5	118.2 (4)
C23—N3—Hg1 ⁱ	125.5 (3)	N6-C15-C14	122.7 (5)
C24—N3—Hg1 ⁱ	115.6 (3)	N6—C15—H15	118.6
C19—N4—C20	128.3 (4)	C14—C15—H15	118.6
C19—N4—H4A	115.9	N6—C16—C17	123.6 (5)
C20—N4—H4A	115.9	N6—C16—H16	118.2
C13—N5—C14	127.8 (4)	С17—С16—Н16	118.2
C13—N5—H5A	116.1	C18—C17—C16	118.8 (5)
C14—N5—H5A	116.1	C18—C17—H17	120.6
C16—N6—C15	117.5 (5)	С16—С17—Н17	120.6
N1—C1—C2	121.9 (5)	C17—C18—C14	119.3 (5)
N1—C1—H1	119.1	C17—C18—H18	120.4

C2	119.1	C14—C18—H18	120.4
C1—C2—C3	120.3 (5)	O3—C19—N4	124.0 (4)
C1—C2—H2	119.9	O3—C19—C11	121.6 (4)
С3—С2—Н2	119.9	N4—C19—C11	114.3 (4)
C2—C3—C4	118.2 (5)	C21—C20—C24	117.7 (5)
С2—С3—Н3	120.9	C21—C20—N4	126.6 (5)
С4—С3—Н3	120.9	C24—C20—N4	115.7 (4)
C3—C4—C5	118.7 (5)	C20—C21—C22	118.6 (5)
C3—C4—N2	124.2 (5)	C20—C21—H21	120.7
C5—C4—N2	117.1 (4)	C22—C21—H21	120.7
N1—C5—C4	121.7 (5)	C23—C22—C21	120.2 (5)
N1—C5—H5	119.1	С23—С22—Н22	119.9
C4—C5—H5	119.1	C21—C22—H22	119.9
O1—C6—N2	123.2 (5)	N3—C23—C22	121.8 (5)
O1—C6—C7	120.1 (4)	N3—C23—H23	119.1
N2—C6—C7	116.7 (4)	С22—С23—Н23	119.1
C8—C7—C12	119.6 (4)	N3—C24—C20	123.6 (5)
C8—C7—C6	123.8 (4)	N3—C24—H24	118.2
C12—C7—C6	116.5 (4)	C20—C24—H24	118.2
C7—C8—C9	119.9 (4)	O4—C25—H25A	109.5
С7—С8—Н8	120.1	O4—C25—H25B	109.5
С9—С8—Н8	120.1	H25A—C25—H25B	109.5
С10—С9—С8	120.0 (4)	O4—C25—H25C	109.5
C10—C9—C13	124.5 (4)	H25A—C25—H25C	109.5
C8—C9—C13	115.4 (4)	H25B—C25—H25C	109.5
C9—C10—C11	120.5 (4)		
Cl1—Hg1—N1—C1	-74.8 (4)	C6—C7—C12—C11	177.1 (4)
Cl2—Hg1—N1—C1	136.9 (4)	C14—N5—C13—O2	5.0 (9)
N3 ⁱ —Hg1—N1—C1	34.3 (4)	C14—N5—C13—C9	-173.5 (5)
Cl1—Hg1—N1—C5	111.1 (4)	C10—C9—C13—O2	-163.7 (5)
Cl2—Hg1—N1—C5	-37.2 (4)	C8—C9—C13—O2	18.9 (8)
N3 ⁱ —Hg1—N1—C5	-139.8 (4)	C10-C9-C13-N5	14.9 (8)
C5—N1—C1—C2	1.7 (9)	C8—C9—C13—N5	-162.6 (5)
Hg1—N1—C1—C2	-172.4 (5)	C13—N5—C14—C15	4.9 (9)
N1—C1—C2—C3	-2.2 (10)	C13—N5—C14—C18	-177.3 (5)
C1—C2—C3—C4	1.0 (9)	C16—N6—C15—C14	0.7 (8)
C2—C3—C4—C5	0.6 (8)	C18—C14—C15—N6	0.7 (8)
C2—C3—C4—N2	-179.4 (5)	N5-C14-C15-N6	178.5 (5)
C6—N2—C4—C3	-20.0 (8)	C15—N6—C16—C17	-2.7 (9)
C6—N2—C4—C5	160.0 (5)	N6-C16-C17-C18	3.3 (10)
C1—N1—C5—C4	0.0 (8)	C16-C17-C18-C14	-1.8 (9)
Hg1—N1—C5—C4	174.2 (4)	C15-C14-C18-C17	0.0 (8)
C3—C4—C5—N1	-1.1 (8)	N5-C14-C18-C17	-178.0 (5)
N2-C4-C5-N1	178.9 (5)	C20—N4—C19—O3	-5.2 (9)
C4—N2—C6—O1	2.2 (9)	C20—N4—C19—C11	172.9 (5)
C4—N2—C6—C7	-176.4 (5)	C12—C11—C19—O3	150.9 (5)
O1—C6—C7—C8	148.0 (5)	C10-C11-C19-O3	-23.8 (7)
N2—C6—C7—C8	-33.4 (7)	C12-C11-C19-N4	-27.2 (7)

O1—C6—C7—C12	-28.5 (7)	C10-C11-C19-N4	158.1 (4)			
N2—C6—C7—C12	150.0 (5)	C19—N4—C20—C21	2.8 (9)			
C12—C7—C8—C9	1.8 (7)	C19—N4—C20—C24	-177.1 (5)			
C6—C7—C8—C9	-174.6 (5)	C24—C20—C21—C22	-0.1 (8)			
C7—C8—C9—C10	-2.7 (7)	N4—C20—C21—C22	-180.0 (5)			
C7—C8—C9—C13	174.9 (4)	C20-C21-C22-C23	0.0 (9)			
C8—C9—C10—C11	1.2 (7)	C24—N3—C23—C22	-0.7 (9)			
C13—C9—C10—C11	-176.1 (5)	Hg1 ⁱ —N3—C23—C22	168.6 (4)			
C9-C10-C11-C12	1.0 (7)	C21—C22—C23—N3	0.4 (9)			
C9—C10—C11—C19	176.0 (4)	C23—N3—C24—C20	0.6 (9)			
C10-C11-C12-C7	-1.9 (7)	Hg1 ⁱ —N3—C24—C20	-169.7 (4)			
C19—C11—C12—C7	-176.5 (5)	C21—C20—C24—N3	-0.2 (9)			
C8—C7—C12—C11	0.4 (8)	N4—C20—C24—N3	179.7 (5)			
Symmetry codes: (i) $-x+1, -y+2, -z+1$.						

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$		
O4—H4…N6 ⁱⁱ	0.82	1.94	2.740 (6)	167.		
N2—H2A…Cl1 ⁱⁱⁱ	0.86	2.64	3.465 (4)	162.		
N5—H5A····O1 ^{iv}	0.86	2.42	3.141 (6)	142.		
Symmetry codes: (ii) $x+1$, $y-1$, $z-1$; (iii) $-x$, $-y+3$, $-z+1$; (iv) $-x+1$, $-y+2$, $-z+2$.						

